您好、欢迎来到现金彩票网!
当前位置:2019欢乐棋牌 > 子图 >

求图论的生成子图算法要求生成尽可能多的子图

发布时间:2019-07-08 21:21 来源:未知 编辑:admin

  有n个人,其中每个人都认识其中的k个人或者一个都不认识,将他们4人一组进行分组,每组中的4个人必须两两相互认识,要求分组数量最多或者尽可能的多。感觉应该就是图论的问题:把人看...

  有n个人,其中每个人都认识其中的k个人或者一个都不认识,将他们4人一组进行分组,每组中的4个人必须两两相互认识,要求分组数量最多或者尽可能的多。

  感觉应该就是图论的问题:把人看做节点,相互认识的两人就是联通的两点,问题就是尽可能多的找出包含4个节点的完全生成子图。

  哪位高手能够给出应该用什么算法解决,或者给出思路也可,谢过!展开我来答

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  展开全部连通图的特点是图中任意两点都是连通的,也就是说只要从任意一点出发能够到达所有的点就能够证明是连通图,否则就是不连通图

  2 采用二维数组,将所有边(线段)定义在二维数组LINE中,记录两遍,边的两个顶点分别作为第一项如(v0,v3)(v3,v0)。

  3 取出一个顶点v0加入到新数组CONPOINT中,并在顶点数组POINT中删除。

  从二维数组LINE中查找第一项中包含X的边,将选出边的第二个顶点(1个或多个)取出,并加入到新数组CONPOINT中,并作未读标记(如果已有该点则不作插入)

  展开全部在图论的历史中,还有一个最著名的问题--四色猜想。这个猜想说,在一个平面或球面上的任何地图能够只用四种颜色来着色,使得没有两个相邻的国家有相同的颜色。每个国家必须由一个单连通域构成,而两个国家相邻是指它们有一段公共的边界,而不仅仅只有一个公共点。20世纪80-90年代曾邦哲的综合系统论(结构论)观将“四色猜想”命题转换等价为“互邻面最大的多面体是四面体”。四色猜想有一段有趣的历史。每个地图可以导出一个图,其中国家都是点,当相应的两个国家相邻时这两个点用一条线来连接。所以四色猜想是图论中的一个问题。它对图的着色理论、平面图理论、代数拓扑图论等分支的发展起到推动作用。 (下图是在上下对折再左右对折以后形成一个轮胎形状,有7个区域两两相连,就是说在一个环面上作图,需要7种颜色,外国数学家构造林格证明:Np=[(7+√1+48p)/2],p=1,N1=7。

  图论中最著名的四色猜想解决办法 韩世君利用三角形性质和数学归纳法解决了四色猜想 摘要:将平面图的不相连点使其相连(这样增加着色难度),形成有许多三角形相连的平面图,根据三角形的稳定性,利用数学归纳法,平面图进行着色最多需4种颜色。 定理:在平面图中,对不同顶点进行着色,相邻顶点着不同颜色,不相邻顶点着相同颜色,则最多需4种颜色。 证明:在平面图中,不在同一直线上的三点决定一个平面,那么三点构成的三角形是平面图中最基本、最简单、最稳定、密闭的图形。 由于在对地图着色过程中不考虑图的具体形状只考虑点是否相邻,将平面图的不相连点使其相连(这样增加着色难度),形成有许多三角形相连的平面图(三点以下肯定成立)。如图1:添加辅助线(不相邻的点使其相邻,这样就增加了着色的色数,有利于证明),将图1分解为4个△ABC。 在平面图中的无数点中,任取相邻三点构成各点相邻的△ABC(见图2),则需3种颜色A B C,在平面图中再任取一点 D 与 A B C 三点相邻,同时D又与A B C三点相连后形成三角形。任取一点E与 A、B、C、D四色相连,E必与四色之一色相同即E点在△ABD中与C色相同、在△ACD中与B色相同、在△BCD中与A色相同、在△ABC外与D色相同,E与另外三色相连形成新的三角形。 在三角形的三点之外任取一点只有在三角形的内部和外部两种情况且这两种情况的点不会相邻,该点最多与三角形的三点相连且又形成新的三角形。 继续选取一点进行着色,该点同样最多与三角形的三点相连且又形成新的三角形,该点至少为四色中的一色。逐点(第n点)着色至将所有点(第n+1点)着色只须A、B、C、D四色其中一色。 图的着色方法:任意一张地图,将孤立的点用一种颜色着色(A色),不能形成密闭图形的相连的点用两种颜色(A、B色)。将剩余的点不相连的用虚线使其相连形成许多三角形,完全不相连的图不进行相连。任取相连三点着三种颜色(A、B、C色),再取与其相连的点,如果与A、B、C三色的点都相连着D色,否则着与其不相连的其中一色,用虚线相连的点可以用同一种颜色也可以用两种颜色,依次取与着色的点相连的点用以上方法进行着色。这样对所有的点进行着色最多用四色(A、B、C、D色)。 图论的广泛应用,促进了它自身的发展。20世纪40-60年代,拟阵理论、超图理论 、极图理论,以及代数图论、拓扑图论等都有很大的发展 拓扑学在泛函分析、李群论、微分几何、微分方程和其他许多数学分支中都有广泛的应用。 (右图是:下面的三叉安在上面的环面上,就是有3个洞的9个两两相连区域,上面的图上下对折再左右对折就是一个轮胎形状环面图2)

  左图是亏格为4时10个两两相连区域构造,上图上下对折,再左右对折,形成一个轮胎形状,再把下面的四叉按照A,B,C,D编号安上,就是有4个洞的两两相连区域图3(王晓明构造)。

http://gardenerus.com/zitu/186.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有